If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-9x-44=0
a = 5; b = -9; c = -44;
Δ = b2-4ac
Δ = -92-4·5·(-44)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-31}{2*5}=\frac{-22}{10} =-2+1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+31}{2*5}=\frac{40}{10} =4 $
| 243=3x+3 | | -11f=-55 | | 5(2x-8)-4=5(x-3)+6 | | 20=4k+4 | | 3x+9(5)=21 | | 3y-4=3y-4 | | 105/84=x/84 | | 5x3x+12=180 | | 2(4z+3)-7=39 | | 49l=74 | | 4c-8=180 | | 6c-6=198 | | y=6+(3,-50 | | 11x-3-3x=-21x+5+26 | | b-b+2b=18 | | -x-4=-9+3x | | 27x-37=17 | | 50/7x=15 | | 5a-8=-188 | | 3r-4=-154 | | 3x-9x+19=4x+39 | | 15t-16t=8 | | 3t-4=68 | | -44-2x=5x+19 | | 10x(8x-3)=21 | | 56=6y | | 8y-4=-316 | | 7t=24 | | 2(b+5b)=2(2+3) | | 4c-3=49 | | 14g+2g-11g-2g=3 | | y+10=55 |